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In this report, we introduce aromatic electron donacceptor ion channelsl™2™. Previously established design strategies were
interactions to construct synthetic ion channels that open in responseapplied in addition to promote cylindrical self-assembly into
to chemical stimulation. The creation of synthetic ion channels and supramolecular oligomers rather than linear self-assembly into
pores from scaffolds that are not known to occur in nature is a supramolecular polymers (nonplanar rigid-rod staves)access
topic of increasing scientific concetn!® Since some years, hollow higher oligomers rather than closed dimers (internal
scientific attention is steadily shifting from unifunctional chanfels crowding* and internal charge repulsidrFigure 1A, blue), and
and pores toward “smart” supramolecular architecture that recog-to orient z-stack$® (hydrogen-bonded chains between flanking
nizes nontrivial ion% or specific characteristics of lipid bilayer  amides; Figure 1A and D, red). Geometry-minimized modetan
membranes, such as membrane poteftiaurface potential, were in good agreement with these expectations. The hydrogen-
membrane composition, and stréSynthetic multifunctional porés bonded chains lining ther-stacks (Figure 1D, red arrows), for
were introducel to combine molecular translocation with molec- example, were not disrupted by ligand intercalation.
ular recognitioA! and transformatiofd for practical applications, Target moleculed and 2 were synthesized from commercial
such as the detection of chemical reacti®h€urrent research on  starting materials in overall 13 and 2 steps, respectively (Figures 1
the use of not only synthefié but also bioengineeré®” and and 2). The NDI hoops were prepared by reacting améhasd4
biological® ion channels and pores as sensors focuses, howeverwith dianhydride5 followed by Z-deprotection of the obtained NDI
almost* exclusively on blockage. Herein, the plum-colored charge- 6 (Scheme 1). Coupling of the resulting amingswith the
transfer complexes formed by dialkoxynaphthalene (DAN) donors carboxylic acids lining the scaffold of the previously repotted
and naphthalenediimide (NDI) acceptors, a classical motif in p-octiphenyl8 followed by hoop deprotection with TFA gave target
supramolecular chemist®y, 22 are introduced to create synthetic moleculel. Structure and sample homogeneity were confirmed by
ion channels with a novel rigid-rod-stack architecture that open  NMR spectroscopy, ESI mass spectrometry, and reverse-phase
rather than close in response to guest binding. HPLC.

We felt that this conceptually new approach could provide access Ligand gating was probed in EYPC-LUY$IPTS (i.e., large
to ligand gating for the following reasons (Figure 1). Self-assembly unilamellar vesicles composed of egg yolk phosphatidylcholine and
of octakis(NDI)p-octiphenylsl was expected to yield-helices loaded with the pH-sensitive dye, 8-hydroxy-1,3,6-pyrenetrisul-
1nH rather thans-barrels 1" because of the mismatched repeat fonate). In this assay, the ratiometric changes in HPTS emission
distances of stacked NDI hoops and rigid-mwdctiphenyl staves. are used to follow the collapse of an applied pH gradient by either

Upon intercalation of DAN ligand® into their mismatched NDI H*/MT or OH-/A~ antiport?62” As anticipated, neither rodl nor
stacks, these closed ion chann&ls8 were expected to undergo a  ligand 2 were highly active (Figure 2Ad and Ae). Once mixed
conformational change by a cooperative untwistirtg give open together, however, they were active (Figure 2Aa). Dose response

Figure 1. Ligand-gated opening of notional rigid-rogthelix 1" into ion channell™2™ by intercalation of DAN ligand® (red) into the mismatched NDI

hoops of transientr-barrel 1M with magnified views of (A) ND-NDI stack highlighting internal crowding (blue) and H-bonded chains (red), and (B)
DAN—NDI CT complex. (C) Geometry-optimized model #F2™ n = 4, m = 12, in side (top) and axial view (bottomp:octiphenyls (dark green) and

DANSs (red) are in ball-and-stick model, NDlIs (light green) in wires, 50% amine protonation, 0% sulfate protonation, H omitted. (D) Detail of aethinimiz
model of 1"2™ with H-bonded chains (red, arrows, C cyan, H gray, N blue, O red, S yellow). All shown suprastructures are, in part, speculative simplifications
that are, however, consistent with experimental data (Figi#?23®and molecular models (C and D); stoichiometries of supramolecules are unknown.
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Figure 2. Changes in activity of NDI rod (1a Ad) in response to (D)
DAN ligands 2, 2a (Ac, BO) and 2b (Ab, Bx). (A) Fractional HPTS
emission,l (Aex = 450 nm,1em = 510 nm), as a function of time during
addition of base4pH = 0.9) followed by2 (a and e, 2Q:M), 2a (c, 40
uM), or 2b (b, 15uM), and thenl (a—d, 1.6 uM, t = 0 s) to EYPC-
LUVsSDHPTS (10 mM HEPES, 100 mM NaCl, pH 7.0). (B) Activity af
(1.6 uM) as a function of the concentration 2f(®), 2a (O), and2b (x).
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a(a) TEA, DMF, 48 h, 40°C, 50%; (b) b, Pd(OHY/C, MeOH, 6 h, rt,
91%; (c) 1. HATU, DMF, 2,6-ditert-butylpyridine, 24 h, rt, 59%, 2. TFA/
CH.CI; 1:1, 73% (for9 — 8 in 9 steps; see ref 12).

to 2 revealed an effective concentration &G 13.7uM and a
Hill coefficientn = 6.5 (Figure 2B @)). The latter value was high,
characterizing the notional supramolecu®' as a sponge that
swallows at leagt six ligands2 to form the open ion channé&f+2™
The much weaker but clearly synergistic effect observed With
and DAN control2b without sulfate showed significant contribu-
tions of aromatic interactions as well as internal ion pairing for
ligand gating (Figure 2Ab/B()). Similar loss of relevant activity
without hydrophobic tail in DAN control2a confirmed the
importance of external hydrophobicity of barrel-stave supramolecule
1n2mfor ligand gating (Figure 2Ac/RY)). Other intercalators, such
as AMP or GMP, were inactive.

The selectivity of ion channel™2™ was consistent with the
designed, confined, and cationic interior. For example, organic ions
such as 8-aminonaphthalene-1,3,6-trisulfonate aniomsxytene
bispyridinium cations were not transported, as expected from the
internal diameter in molecular models (Figure XC= 5.4 A)28
Competitive inhibition of OH influx by external anions implied
an OH /A~ antiport mechanism with inhibition sequeft¥ SO~
> NO;~ &~ |~ > CI- ~ Br~ > AcO~ > F~. Cations such as Na

K*, Rb", or Cs" did not interfere with OH/A~ exchange. The
appearance of the typical plum color of charge-transfer complexes
completed this consistent experimental evidence for rationally
designed, highly cooperative ligand gating of synthetic anion
channels by aromatic electron dor@cceptor interactions. Taken
together, these finding%2428 confirmed the potential of the new
rigid-rod zz-stack architecture to expand the practical usefulness of
synthetic multifunctional ion channels and pdfasward electron-
transfer processes.
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